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Direct numerical simulations (DNS) 
•  Turbulent combustion occurs over a wide range of scales 

–  Device sizes are O(1m) 
–  Diffusive scales and flame thickness O(10-100 µm) 
–  Non-linear coupling and interaction among the entire range of 

scales 

• Combustion CFD approaches 

• Direct numerical simulation (DNS) 
–  No sub-grid models, but limited on range of scales 
–  Simulations limited to canonical research configurations 

Small scales Large scales 

DNS LES RANS ♦ 



3 

DNS is hard 

• DNS of combustion is highly floating point intensive 
•  To increase the range of scales captured by a factor ‘X’, the 

computational work increases by ~X3 

• More time steps needed for better statistics and less 
dependence on initial condition 

• Complex fuels require higher number of equations per grid 
point 

• Device scale simulations are intractable and beyond the reach 
of DNS 
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T` = 3.75K T` = 7.50K T` = 15.0K T` = 30.0K 
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Results from a 2D parametric study with hydrogen chemistry (9 chemical species), Chen et al. 2003. 

§  Objective: 3-dimensional DNS of HCCI combustion in a high-pressure stratified turbulent dimethyl 
ether (DME) blended iso‑octane/air mixture using detailed chemical kinetics (60 chemical species) 

 Grid: 2D O(106) ➟ 3D O(109). Chemical complexity: 9 ➟ 60 species. 
§  Goals: To investigate 

Ø  Interaction of 3D turbulence with important chemical kinetic pathways leading to ignition 
Ø  Effects of charge stratification on heat release modes, pressure rise rates, and pollutant 

formation 
Ø  Generate a high-fidelity database for use as a benchmark to validate sub-grid combustion 

models for mixed-mode combustion in LES and RANS 

What do we want to simulate on Titan? 
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Planning the science simulation 

•  Recent 3D simulation on Jaguar 
was used to extrapolate and plan 
a target Titan simulation 

•  Planned simulation will have more 
grid points and/or larger chemistry 

•  Will need a month on 12,000 
hybrid nodes of Titan 

Figure 5: Computational domain and grid to be used for simulations of the CRF HCCI engine.

Figure 6: Reaction and diffusion structures for OH radical during the third stage thermal explosion of a high-pressure
DME fueled autoignition process.Recent 3D DNS of auto-ignition with 30-species 

DME chemistry (Bansal et al. 2011) 
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Defined a target problem and profiled it 
• A benchmark problem was defined to closely resemble the 

target simulation 
–  52 species n-heptane chemistry and 483 grid points per node 
–  483 * 12,000 nodes = 1.5 billion 

grid points 

• Code was benchmarked and 
profiled on dual-hexcore XT5 

• Several kernels identified and 
extracted into stand-alone 
driver programs 

Chemistry 

Core S3D 
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Chemistry Kernels 

• Reaction rates, thermodynamic properties and transport 
coefficients account for 55% of time. 
–  Complex chemical kinetic models needed to address multi-stage ignition 

and flame dynamics  

• Point-wise functions that are independent of S3D’s mesh data 
structure and MPI-layer 
–  Efforts will pay for a long time irrespective of changes to S3D’s 

algorithms, data structures and solver. 

• Used by other combustion codes in the community. 
–  Impacts other HPC and workstation-scale combustion applications. 
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General library vs model specific code 

Legacy	  fortran	  library	  
Lots	  of	  if-‐then,	  do	  

State 
Input 

Output 

Parse	   Analyze	   Generate	  Chemistry  
Tables 

Compute kernel 
Fortran/CUDA/?? 

Generated	  code	  State 
Input 

Output 

Chemistry Table 
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Chemistry Code Generator 
• Code generation for the chemistry routines is in vogue 

–  Allows non-standard and reduced chemistry models. 
–  Branches are evaluated and loops are unrolled at generation time. 
–  Model constants are in place avoiding pointer chases. 

• Goals of the new code generator 
–  Ensure accuracy and correctness for complex chemistry. 
–  Ability to generate for newer architectures, programming models. 
–  Target a wider audience using much more complex chemistry. 

•  Multi-zone type calculations with thousands of species 
–  Expose more levels of parallelism 

•  Partition and parallelize the reaction network 
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Need to accelerate more than chemistry 

• Amdahl’s law: If you don’t accelerate everything, soon you 
won’t have accelerated any 

Weak scaling of target problem on Jaguar XT5 
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Core S3D Time Advance Loop 

•  Flux, derivatives, RHS and integrate account for 40% time 
–  d/dt (Qk) = (Advection) + (Diffusion) + (Source) 
–  Evaluation and accumulation of the terms that are on the right 

hand side of the equation 
–  Time integration 

• Memory intensive 3, 4 and 5 dimensional loops and arrays 
–  Low computation intensity 
–  Strided and non-contiguous memory access 
–  Representative of other CFD codes 

• MPI communication between nearest neighbors in S3D’s 3D 
grid topology for halo exchange 
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Hybridization of S3D 

•  Turn S3D from pure MPI code to a hybrid MPI+OpenMP  
–  Improve MPI scaling 
–  Use OpenMP extensions for porting all of S3D to accelerator 

• S3D code revisions 
–  Rearranging the compute loops and derivatives to have large 

compute regions interleaved with communication 
–  Variable scoping - distinguishing shared global variables from thread 

private variables 
–  Overlapping computation and communication by identifying 

opportunities for preposting halo communication 
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While we were hybridizing S3D 
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• XE6 came with Gemini interconnect 

Scaling of original code (XT5 vs XE6) 
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Performance of hybrid code 

• Currently we cannot beat 
pure-MPI performance 
–  Scales better, but poor in 

absolute time 

• Needs more tuning 
–  Memory affinity 
–  Placement 
–  Optimum number of threads 

• Our vision in hybridizing S3D 
is to be on the right curve for 
exascale 2008 2018 
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S3D rewrite is in progress 

• Programming models being explored 
–  CUDA (Fortran) 
–  CCE !$omp directives 
–  PGI !$acc directives 

• We anticipate 4X better performance on XK6 Titan nodes 
than XT5 Jaguar 
–  Combination of on-node GPU acceleration and improved parallel 

scaling 


